
8/13/23, 7:45 PM Licenses & products / models (70-LIP) - SDEVEN Software Development & Engineering Methodology

Page 1 of 4

Version: 7.0.14
Release date: 230813

Licenses and Products (SDEVEN.70-LIP)

Table of Content

Licenses and Products (SDEVEN.70-LIP)

Software licenses universe

Software licenses

System vs Product

Software products / models

By completeness taxonomy

By code level taxonomy

This procedure refers to software licenses and products, how are used and what are good for.

Procedure present:

what kind of licenses are practiced and

how a software system becomes a product (or when can be considered product).

Software licenses universe

Without any other clauses a software license is about the legal rights to use the respective product / system.

A software system can download, copied, installed, removed, etc in most cases free (without any payment
required). But that's all. From legal perspective you cannot use it (for any purpose) without a license. And
sometimes even the installation can be considered "out of law".

Another important fact that must be understood is that a license DO NOT transfer you the intellectual property of
the software code, even of the software product, You cannot treat it as your own property, You CAN ONLY USE IT
for your own and in your name. Also you can make safety copies, can backup it and restore it.

SDEVEN Software Development & Engineering Methodology

This procedure is not mandatory for software development process but explain how a "program" becomes a "product".

Also ref licensing aspect, this is clearly a commercial and legal one, but there are situations where licensing needs some measurable

metrics which can be identi�ed only in strong correlation with software as design and development.

8/13/23, 7:45 PM Licenses & products / models (70-LIP) - SDEVEN Software Development & Engineering Methodology

Page 2 of 4

From legal perspective you cannot use the software without permission (given by license), Even if system does not
enforce any restriction.

Software licenses

There are 3 kind of license models (types) used by company for software products:

open licenses

these are free (ie, there is no cost to pay for them) - for these licenses the company preserve the intellectual
property and copyright and offer for free the rights of use - any other services are not default covered by this
license - cannot sale or resale the system / product

turn key licenses

these are system products made especially for a customer, paid by him and the intellectual property is
transferred to the customer - after �nishing the system, company has no right to sell / resell or use the code or
parts of code AS IT WAS TRANSFERRED - however, in most cases, two "evidence" read only CDs are made
having a reference of the code for which the intellectual property is transferred

commercial licenses

these are strictly with payment for usage - quanti�cation of payment is be made in various forms (and unit of
measures), for example number of users, number of computers, number of processors, quantity of memory,
and so on - the software can restrict usage (but is not mandatory, being a design speci�cation) by "forcing" in a
way these quantities, of course �rst thing being the software ability to "count" for them

If not otherwise speci�ed, open licenses should be accompanied with text: "This software is a copyright of company
Systems (REN CONSULTING SOFT ACTIVITY SRL).". Text should be put at start of license content as to not alter its
original text which is usually published and can be referred AS IS.

System vs Product

For a software there are 3 major targets of development cycle:

to become a product

to become a system

to become both.

IMPORTANT notice

Software targets of development cycle

8/13/23, 7:45 PM Licenses & products / models (70-LIP) - SDEVEN Software Development & Engineering Methodology

Page 3 of 4

As product must have an usage documentation (ie, work procedures), an administration documentation (ie,
installation, con�guration, maintenance), a packaging procedure.

As system, a software should have:

an installation procedure, which could be just a documentation or other automation software. This procedure
should be clear, well de�ned (ie, deterministic, without ambiguities) and repeatable

a logging mechanism and some rotate policies. Using host operating system standards is recommend in order
to be easy maintained by any system administrator

As system product inherit the requirements from both categories.

There are also other "things" that must be satis�ed, especially from commercial point of view such as:

a logo would be required for a product

presentation materials, presentation views (ie, slides), a presentation site, some hints for sales and bid teams
(ie, 130-SKIT elements)

This methodology assures that the essential parts of both taxonomies will be covered, at least in raw forms creating
the base for future / next re�nement levels.

Software products / models

From this point of view relevant taxonomies are:

by completeness

by code level

By completeness taxonomy

full standalone - products that contains everything to assure a complete functionality (aka full stack products,
or in jargon "with batteries included", all in one, etc)

modules - products that assure a single functionality usually useless only itself, but normally used in a large
context, combined with other modules; examples: a database JSON transformer, a caching system, a queuing
systems, etc

frameworks - products aimed to be used as foundation to build other products over it; examples: python Flask,
company CORE, etc

interfaces - products aimed to "stay in front" of other systems / products and therefore assuring different kind
of protection, translation, etc; often known as middleware products; examples: data APIs, proxies, guards, data
translators, SQL Alchemy, etc

8/13/23, 7:45 PM Licenses & products / models (70-LIP) - SDEVEN Software Development & Engineering Methodology

Page 4 of 4

By code level taxonomy

low level / infrastructure - these are systems that address low level operations, with intensive (ie, directly
coded) use of operating system directives; examples: print utilities, �le system watchers, system monitors,
serializer, de-serializer, en(de)coders, etc

mid and high level - these are systems that do not address directly operating system directives (just in rare
cases for usual �le operation), usually addressed to business or just to assets inventory (infrastructure systems
for example); examples: ERPs, invoice makers, etc

UI / meta - these are systems that assure some features for user interface (operations) by using different
�avours of (tagging) languages speci�c to a device (for example VT100 terminals), to a software (for example
HTML for browsers); sometimes these systems use "real" languages with empowerment of complex
programming languages (for example JavaScript) or just simple "stylers" to assure a better readability (CSS is a
good example, Markdown and PostScript are others, etc)

Last update: August 13, 2023

